Autoregressive Mixture Models for Dynamic Spatial Poisson Processes: Application to Tracking Intensity of Violent Crime

نویسنده

  • M. A. Taddy
چکیده

This article develops a set of tools for smoothing and prediction with dependent point event patterns. The methodology is motivated by the problem of tracking weekly maps of violent crime events, but is designed to be straightforward to adapt to a wide variety of alternative settings. In particular, a Bayesian semiparametric framework is introduced for modeling correlated time series of marked spatial Poisson processes. The likelihood is factored into two independent components: the set of total integrated intensities and a series of process densities. For the former it is assumed that Poisson intensities are realizations from a dynamic linear model. In the latter case, a novel class of dependent stick-breaking mixture models are proposed to allow nonparametric density estimates to evolve in discrete time. This, a simple and flexible new model for dependent random distributions, is based on autoregressive time series of marginally beta random variables applied as correlated stick-breaking proportions. The approach allows for marginal Dirichlet process priors at each time and adds only a single new correlation term to the static model specification. Sequential Monte Carlo algorithms are described for on-line inference with each model component, and marginal likelihood calculations form the basis for inference about parameters governing temporal dynamics. Simulated examples are provided to illustrate the methodology, and we close with results for the motivating application of tracking violent crime in Cincinnati.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime

BACKGROUND Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hiera...

متن کامل

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

Spatial Analysis of the Relationship between Alcohol Outlet Density and Criminal Violence

Misuse of alcohol is a significant public health problem, potentially resulting in unintentional injuries, motor vehicle crashes, drownings, and, perhaps of greatest concern, serious acts of violence, including assaults, rapes, suicides, and homicides. Although previous research establishes a link between alcohol consumption to increased levels of violence, studies relating the density of alcoh...

متن کامل

Connections Between Multitarget Intensity Filters and Medical Imaging

The discussion of multitarget intensity tracking filters is greatly enlivened by exploring the close connections that exist between these filters and two medical imaging methods whose clinical use is well established. These connections arise because nonhomogeneous Poisson point processes (PPPs) play a central role in both applications as models of the spatial variability of the crucial quantity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010